Molecular BioSystems

www.molecularbiosystems.org

RSC Publishing is a not-for-profit publisher and a division of the Royal Society of Chemistry. Any surplus made is used to support charitable activities aimed at advancing the chemical sciences. Full details are available from www.rsc.org

IN THIS ISSUE

ISSN 1742-206X CODEN MBOIBW 4(11) 10

DIBW 4(11) 1033–1140 (2008)

Cover

See Nina Y. Yao and Mike O'Donnell pp. 1075-1084. The main image, designed by Nina Y Yao, illustrates replisome dynamics and the use of DNA trombone loops to bypass replication blocks. Inset is a picture of Professor Bruce Alberts helping to bring science to life in a San Francisco school. Image reproduced by permission of Professor Bruce Alberts, UCSF Today and, Nina Y Yao and Mike O'Donnell from Mol. Biosyst., 2008, 4, 1075.

CHEMICAL BIOLOGY

B81

Drawing together research highlights and news from all RSC publications, *Chemical Biology* provides a 'snapshot' of the latest developments in chemical biology, showcasing newsworthy articles and significant scientific advances.

Chemical Biology

November 2008/Volume 3/Issue 11 www.rsc.org/chembiology

EDITORIAL

1043

Rise of the machines: Bruce Alberts and the biochemistry of multi-protein complexes

The chair of the *Molecular BioSystems* Editorial Board, Professor Tom Kodadek, introduces this special issue dedicated to Professor Bruce Alberts.

HIGHLIGHTS

1046

1058

1070

Long-range chromosomal interactions and gene regulation

Andriana Miele and Job Dekker*

An overview of recently discovered long-range chromosomal interactions is presented, and a network approach is proposed to unravel gene-element relationships.

Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement

G. Marius Clore

Paramagnetic relaxation enhancement can be used to detect and visualize minor transient species, thereby exploring lowly-populated regions of the free energy landscape of biological macromolecules and their complexes that are inaccessible to conventional structural and biophysical techniques.

Repetitive lagging strand DNA synthesis by the bacteriophage T4 replisome

Michelle M. Spiering, Scott W. Nelson and Stephen J. Benkovic*

In this highlight we address when Okazaki primer synthesis is initiated and how the primer is captured by a recycling lagging strand polymerase.

REVIEWS

Replisome dynamics and use of DNA trombone loops to bypass replication blocks

Nina Y. Yao and Mike O'Donnell*

DNA "trombone" loops were first proposed by Bruce Alberts to explain how twin polymerases replicate both strands of duplex DNA simultaneously. DNA trombone loops may also facilitate the ability of a replisome to circumvent blocks to replication.

REVIEWS

1085

FACT and the reorganized nucleosome

Tim Formosa

An alternative view of FACT activity is proposed in which H2A–H2B histone dimers are not initially displaced from nucleosomes. A role for "reorganized" nucleosomes in forming and removing nucleosomal barriers is discussed.

Single molecule studies of homologous recombination

Ilya J. Finkelstein and Eric C. Greene*

This review summarizes single molecule studies of homologous DNA recombination. Single molecule experiments are yielding a picture of DNA processing by repair enzymes that is unobtainable *via* traditional biochemical methods.

Mechanisms of type III protein export for bacterial flagellar assembly

Tohru Minamino, Katsumi Imada and Keiichi Namba*

Distinct roles of proton motive force and the FliI ATPase with dynamic interactions between component proteins of the flagellar type III protein export apparatus are the keys to efficient self-assembly of the bacterial flagellum.

PAPERS

1116

Phosphorylation of the Gal4 DNA-binding domain is essential for activator mono-ubiquitylation and efficient promoter occupancy

A. Ferdous, M. O'Neal, K. Nalley, D. Sikder, T. Kodadek* and S. A. Johnston*

A novel phosphorylation event in the DNA-binding domain of the Gal4 transactivator is reported. Phosphorylation of Ser22 is shown to be essential for the subsequent mono-ubiquitylation of the activator, which, in turn, is essential for stable promoter binding and activity *in vivo*.

PAPERS

Q

Building proteomic pathways using *Drosophila* ventral furrow formation as a model

Mamta Puri, Anupam Goyal, Nina Senutovich, Susan R. Dowd and Jonathan S. Minden*

Ventral furrow formation is the first morphogenetic movement during *Drosophila* gastrulation. A screen for ventral proteome changes identified many proteins. Cycles of gene expression manipulation and proteome analysis showed that the proteasome and iron homeostasis form part of a ventral-specific regulatory loop.